1) 3sin^4 x +2 cos^2 3x + cos^3x= 3 cos^4 x - cos x +1
<=> 3cos^4 x - 3sin^4 x - cos x + 1 - 2cos^2 3x - cos^3 x = 0
<=> 3cos2x - cosx + 1 - 2cos^2 3x -cos^3 x=0
<=> 3cos2x - cosx - cos 6x - cos^3 x=0
<=> 12cos2x - 4cosx -4cos6x - cos3x + 3cosx=0
<=> 12cos2x - 2cos2xcosx - 4 cos6x=0
<=> 2cos2xcosx + 16cos^3 2x = 0
( đặt nhân tử chung cos2x ra rùi giải bình thường).
2) 1 + 3cosx + cos 2x - 2cos3x = 4 sinx sin2x
<=> 1 + 3cosx + cos2x - 2cos3x = 2cosx -2cos3x
<=> 1 + 3cosx + cos2x - 2cosx =0
<=> cos2x +cosx +1=0
<=> 2cos^2 x-1 +cosx +1 =0
(phương trình ngon lành rùi)