Tích phân hai lớp (tích phân kép)

Thandieu2

Thần Điêu
TÍCH PHÂN HAI LỚP - TÍCH PHÂN KÉP.

1. Định nghĩa tích phân kép:



Xét trong mặt phẳng Oxy, miền kín D giới hạn bởi đường L (đóng và bị chặn ; miền D kín nếu nó giới hạn bởi đường cong kín, và các điểm trên biên L được coi là thuộc D)

Ta xét hình trụ, có mặt đáy là miền D và mặt trên là mặt cong z = f(x,y) (f(x,y) xác định và liên tục trong miền D).

Khi đó, ta chia miền D thành n phần có diện tích tương ứng là
latex.php
và mỗi miền có đường kính là
latex.php
(đường kính của 1 miền là khoảng cách lớn nhất giữa hai điểm thuộc miền đó. Hay ta có thể ký hiệu:
latex.php
)

Lấy trên mỗi miền 1 điểm
latex.php
khi đó trên mỗi miền
latex.php
, thì hình trụ sẽ xấp xỉ với hình trụ có đáy là
latex.php
và chiều cao là
latex.php
. Do đó, thể tích của hình trụ có mặt đáy là D và mặt trên là f(x,y) có thể tính xấp xỉ bởi:
latex.php


Như vậy, tổng Vn phụ thuộc vào cách chia (còn gọi là phân hoạch của ) miền D và cách chọn điểm Pi. Do vậy, nếu chúng ta chia miền D càng nhiều thì thể tích hình trụ càng chính xác. Nghĩa là, đường kính di của mỗi miền càng nhỏ (càng tiến về 0) thì ta sẽ có chính xác diện tích của miền D.

Vậy, cho
latex.php
sao cho
latex.php
. Khiđó, nếu tổng Vn tiến đến 1 giá trị hữu hạn V không phụ thuộc cách chia miền D và cách chọn điểm Pi thì giới hạn V đó được gọi là tích phân kép của hàm f(x,y) trên miền D và được ký hiệu
latex.php

trong đó: hàm số f(x,y) được gọi là hàm dưới dấu tích phân, D được gọi là miền lấy tích phân; ds là yếu tố diện tích.

Nhận xét:

1. Từ định nghĩa ta thấy rằng, tích phân kép (tích phân hai lớp) được xuất phát từ yêu cầu tính thể tích của hình trụ có mặt trên là mặt cong bất kỳ và mặt đáy là hình chiếu của mặt cong xuống mặt phẳng z = 0. Do đó, f(x,y) > 0. Tuy nhiên, ta vẫn có thể xét trường hợp f(x,y) < 0 (trường hợp này có thể xem như hình trụ có mặt dưới là f(x,y) và mặt trên là mặt phẳng z = 0. Và như vậy, ta có thể xét f(x,y) là hàm có dấu bất kỳ.

2. Do tích phân 2 lớp không phụ thuộc vào cách chia miền D nên ta có thể chia miền D bởi các đường thẳng song song với trục Oy (cách đều nhau 1 khoảng Δx) và các đường thẳng song song với trục Ox (cách đều nhau 1 đoạn Δy). Khi đó Δs = Δx.Δy và ds được thay bởi dxdy. Nên ta thường dùng ký hiệu:
latex.php


3. Nếu hàm số f(x,y) liên tục trên miền kín D thì nó khả tích trên miền D ấy. Nghĩa là,
latex.php
tồn tại (ta công nhận điều này)

2. Tính chất của tích phân kép:
Từ định nghĩa, ta có thể rút ra các tính chất sau đây ủa tích phân kép:
1.
latex.php
(diện tích miền D)

2.
latex.php


3.
latex.php


4. Nếu miền D được chia thành 2 phần D1, D2 không có điểm trong chung (D1, D2 chỉ có điểm biên chung) thì:
latex.php


5. Nếu
latex.php
trên D, thì:

latex.php


6. Nếu
latex.php
thì

latex.php


Nguồn: thunhan.wordpress.com
 

VnKienthuc lúc này

Không có thành viên trực tuyến.

Định hướng

Diễn đàn VnKienthuc.com là nơi thảo luận và chia sẻ về mọi kiến thức hữu ích trong học tập và cuộc sống, khởi nghiệp, kinh doanh,...
Top