[Ôn vào lớp 10] Giải bài toán bằng cách lập phương trình - hệ phương trình

Thandieu2

Thần Điêu
A. KIẾN THỨC CẦN NHỚ:
Phương pháp chung:
Bước 1: Gọi ẩn phù hợp, đơn vị tính, điều kiện cho ẩn nếu có.
Bước 2: Biểu đạt các đại lượng chưa biết thông qua ẩn và các đại lượng đã biết.
Bước 3: Lập phương trình hoặc hệ phương trình.
Bước 4: Giải phương trình, hệ phương trình lập được ở bước 3.
Bước 5: Đối chiếu điều kiện và kết luận.

[PDF]https://server1.vnkienthuc.com/files/4/MON_TOAN/toan9giaibtlappthpt.pdf[/PDF]

Bài 1: Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 3 km/h nên họ đến B sớm muộn hơn nhau 30phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 30 km.
Bài 2: Một chiếc thuyền khởi hành từ một bến sông A. Sau 5h30p một ca nô đuổi theo và đuổi kịp thuyền tại một địa điểm cách bến sông A 20 km. Hỏi vận tốc của thuyền biết vận tốc của ca nô chạy nhanh hơn thuyền là 12km/h.
Bài 3: Hai người đi xe đạp khởi hành cùng một lúc từ hai địa điểm A, B cách nhau 54 km, đi ngược chiều nhau và gặp nhau sau 2h. Tính vận tốc của hai người đó biết rằng vận tốc của người đi từ A bằng 4/5 vận tốc của người đi từ B.
Bài 4: Một người đi xe đạp từ tỉnh A đến tỉnh B cách nhau 50 km. Sau đó 1h30p, một người đi xe máy cũng đi từ A đến B và đến B trước người đi xe đạp 1h. Tính vận tốc của mỗi xe biết vận tốc của xe máy gấp 2,5 lần vận tốc xe đạp.
Bài 5: Một ôtô chuyển động đều với vận tốc đã định để đi hết quãng đường 120km. Đi được nửa quãng đường, xe nghỉ 3p nên để đến nơi đúng giờ xe đã phải tăng vận tốc thêm 6km/h trên nửa quãng đường còn lại. Tính thời gian xe lăn bánh trên đường.
Bài 6: Một người đi xe đạp từ A đến B trong một thời gian đã định. Khi còn cách B 30 km, người đó nhận thấy rằng sẽ đến B muộn nửa giờ nếu giữ nguyên vận tốc đạng đi, nhưng nếu tăng vận tốc thêm 5km/h thì sẽ đến B sớm nửa giờ. Tính vận tốc của xe trên quãng đường đi lúc đầu.
Bài 7: Một người đi xe đạp từ A đến B cách nhau 33 km với vận tốc xác định. Khi từ B trở về A người ấy đi bằng con đường khác dài hơn trước 29 km nhưng với vận tốc lớn hơn vận tốc lúc đi 3km/h. Tính vận tốc lúc đi, biết thời gian về nhiều hơn thời gian đi 1h30p.
Bài 8: Hai bến sông A, B cách nhau 40 km. Cùng một lúc với ca nô xuôi bến từ bến A có một chiếc bè trôi từ bến A với vận tốc 3km/h. Sau khi đến bến B, ca nô trở về bến A ngay và gặp bè khi đã trôi được 8km. Tính vận tốc riêng của ca nô, biết rằng vận tốc riêng của ca nô không đổi.
Bài 9: Một ca nô chạy xuôi dòng từ bến A đến bến B, rồi lại chạy ngược dòng từ bến B trở về bến A mất tất cả 4h. tính vận tốc của canô khi nước yên lặng, biết quãng sông AB dài 30km và vận tốc của dòng nước là 4km/h.
Bài 10: Một hình chữ nhật có chu vi là 134m. nếu giảm mỗi kích thước của vườn đi 1m thì diện tích của vườn bằng diện tích của hình vuông có cạnh bằng 28m. Tính các kích thước của hình chữ nhật đó.
Bài 11: Một tấm tôn hình chữ nhật có chu vi là 48 cm. Người ta cắt bỏ mỗi góc một hình vuông có cạnh 2cm rồi gấp lên thành một hình hộp chữ nhật không có nắp có thể tích 96 cm[SUP]3[/SUP]. Tính các kích thước của hình chữ nhật ban đầu.
Bài 12: Một mảnh vườn hình chữ nhật có chu vi 34m, nếu tăng chiều dài 3m và tăng chiều rộng 2m thì diện tích tăng thêm 45m[SUP]2[/SUP]. Hãy tính chiều dài, chiều rộng của hình chữ nhật lúc đầu.
Bài 13: Một tam giác vuông có chu vi là 30m, cạnh huyền 13 cm. Tính độ dài các cạnh góc vuông của tam giác vuông đó.
Bài 14: Một sân hình chữ nhật có diện tích là 240 m[SUP]2[/SUP]. Nếu tăng chiều rộng thêm 3m, giảm chiều dài 4m thì diện tích không đổi. Tính chiều dài và chiều rộng.

Bài 15: Hai máy cày cùng cày một đám ruộng. Nếu cả hai máy cùng làm thì sẽ cày song trong 4 ngày. Nếu cày riêng thì máy 1 sẽ cày song nhanh hơn máy 2 là 6 ngày. Hỏi nếu cày riêng thì mỗi máy cày song đám ruộng sau bao nhiêu ngày.
Bài 16: Một tổ may mặc định may 600 áo trong thời gian đã định. Nhưng do cải tiến kỹ thuật nên năng suất tăng lên, mỗi ngày làm thêm 4 áo, nên thời gian sản xuất giảm 5 ngày. Hỏi mỗi ngày tổ dự định may bao nhiêu áo.
Bài 17: Một tổ may mặc định may 150 bộ quần áo trong thời gian đã định. Nhưng do cải tiến kỹ thuật nên năng suất tăng lên, mỗi ngày làm thêm 5 bộ quần áo, nên thời gian sản xuất giảm 1 ngày so với dự định. Hỏi mỗi ngày tổ dự định may bao nhiêu áo.
Bài 18: Nếu hai vòi nước cùng chảy vào một bể không có nước thì sau 4h đầy bể. Nếu cho chảy riêng đầy bể thì vòi 1 cần ít thời gian hơn vòi 2 là 6h. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể sau bao lâu.
Bài 19: Một tổ may mặc cố kế hoạch may 720 bộ quần áo theo năng xuất dự kiến. Thời gian làm theo năng xuất tăng 10 sản phẩm mỗi ngày kém 4 ngày so với thời gian làm theo năng xuất giảm đi 20 sản phẩm mỗi ngày ( tăng, giảm so với năng xuất dự kiến ). Tính năng xuất dự kiến.

DẠNG 2: LẬP HỆ PHƯƠNG TRÌNH:

Bài 1: Để đi đoạn đường từ A đến B, một xe máy đã đi hết 3h20 phút, còn một ôtô chỉ đi hết 2h30phút. Tính chiều dài quãng đường AB biết rằng vận tốc của ôtô lớn hơn vận tốc xe máy 20km/h.
Bài 2: Có hai vòi nước, vòi 1 chảy đầy bể trong 1,5 giờ, vòi 2 chảy đầy bể trong 2 giờ. Người ta đã cho vòi 1 chảy trong một thời gian, rồi khóa lại và cho vòi 2 chảy tiếp, tổng cộng trong 1,8 giờ thì đầy bể. Hỏi mỗi vòi đã chảy trong bao lâu?
Bài 3: Một đám đất hình chữ nhật có chu vi 124m. Nếu tăng chiều dài 5m và chiều rộng 3m thì diện tích tăng thêm 225 m2. Tính kích thước của hình chữ nhật đó.
Bài 5: Hai người ở hai địa điểm A và B cách nhau 3,6 km, khởi hành cùng một lúc ngược chiều nhau và gặp nhau ở một điểm cách A là 2km. Nếu cả hai cùng giữ nguyên vận tốc nhưng người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người.
Bài 6: Hai đội công nhân cùng làm một đoạn đường trong 24 ngày thì xong. Mỗi ngày phần việc của đội A làm được nhiều gấp rưỡi đội B. Hỏi nếu làm một mình thì mỗi đội làm xong đoạn đường đó trong bao lâu?

Bài 7: Một chiếc thuyền khởi hành từ bến sông A. Sau đó 5h20’ một chiếc cano chạy từ bến sông A đuổi theo và gặp chiếc thuyền tại một điểm cách bến A 20km. Hỏi vận tốc của thuyền, biết rằng cano chạy nhanh hơn thuyền 12km.
Bài 8: Một người đi xe đạp đi từ địa điểm A đến địa điểm B cách nhau 30km. Khi từ B trở về A, người đó chọn con đường khác dễ đi hơn nhưng dài hơn con đường cũ 6km. Vì thế, khi đi về với vận tốc lớn hơn vận tốc lúc đi là 3km/h nên thời gian về ít hơn thời gian đi 20 phút. Tính vận tốc lúc đi.
Bài 9: Một xí nghiệp có kế hoạch sản xuất 180 tấn dụng cụ trong một thời gian đã định. Nhưng nhờ tinh thần thi đua, nên mỗi ngày xí nghiệp sản xuất nhiều hơn mức dự kiến 1 tấn; chẳng những rút ngắn thời gian dự định 1 ngày mà còn sản xuất thêm 10 tấn ngoài kế hoạch. Hỏi thời gian dự kiến bao nhiêu ngày ? Mỗi ngày dự kiến làm ra bao nhiêu tấn dụng cụ ?
Bài 10: Một hội đồng thi có 390 thí sinh phân đều các phòng. Nếu xếp mỗi phòng thi thêm 4 thí sinh thì số phòng thi sẽ giảm đi 2 phòng. Hỏi lúc đầu mỗi phòng thi dự định xếp bao nhiêu thí sinh ?
Bài 11: Một hình chữ nhật có chiều rộng ngắn hơn chiều dài 1cm. Nếu tăng thêm chiều dài ¼ của nó thì diện tích hình chữ nhật đó tăng thêm 3cm2. Tính diện tích hình chữ nhật ban đầu?
Bài 12: Một hình chữ nhật có chu vi là 180m. Nếu bớt mỗi chiều đi 5 mét thì diện tích chỉ còn 1276m2. Tìm độ dài mỗi chiều?
Vận tốc điểm A hơn điểm B là 2,5cm/phút. Tìm vận tốc của mỗi điểm?
Tính các chiều của công viên?
Bài 13: Hai người đi xe đạp cùng khởi hành tại một địa điểm về hai hướng vuông góc với nhau. Sau 2 giờ họ cách nhau 60km theo đường chim bay. Tìm vận tốc của mỗi người. Biết rằng vận tốc của người này hơn vận tốc người kia là 6km/h.
Bài 14: Một xe gắn máy đi từ A đến B cách nhau 150km. Nếu mỗi giờ xe tăng thêm 10km thì đến B sớm hơn thời gian dự định là 30 phút. Tìm vận tốc ban đầu?
Bài 15: Hai tỉnh A và B cách nhau 42km. Một chiếc tàu đi từ tỉnh nọ đến tỉnh kia. Khi đi ngược dòng sông từ A tới B thì vận tốc của nó nhỏ hơn vận tốc lúc xuôi dòng là 4km/h. Tính vận tốc của chiếc tàu khi xuôi dòng và khi ngược dòng, biết rằng thời gian ngược dòng nhiều hơn thời gian xuôi dòng là 1 giờ 12 phút.
Bài 16: Một tàu thuỷ chạy trên một khúc sông dài 80km, cả đi lẫn về mất 8h20’. Tính vận tốc của tàu khi nước yên lặng, biết rằng vận tốc của dòng nước là 4km/h.
Bài 17: Một chiếc thuyền khởi hành từ bến sông A. Sau đó 5h20’ một chiếc cano chạy từ bến sông A đuổi theo và gặp chiếc thuyền tại một điểm cách bến A 20km. Hỏi vận tốc của thuyền, biết rằng cano chạy nhanh hơn thuyền 12km.
Bài 18: Một người đi xe đạp đi từ địa điểm A đến địa điểm B cách nhau 30km. Khi từ B trở về A, người đó chọn con đường khác dễ đi hơn nhưng dài hơn con đường cũ 6km. Vì thế, khi đi về với vận tốc lớn hơn vận tốc lúc đi là 3km/h nên thời gian về ít hơn thời gian đi 20 phút. Tính vận tốc lúc đi.
 

VnKienthuc lúc này

Định hướng

Diễn đàn VnKienthuc.com là nơi thảo luận và chia sẻ về mọi kiến thức hữu ích trong học tập và cuộc sống, khởi nghiệp, kinh doanh,...
Top