Hình 7: Một số phương pháp chứng minh hình học 7

FOREVER812

New member
Xu
0
1. Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau:
C1: Chứng minh hai tam giác bằng nhau.
C2: Sử dụng tính chất bắc cầu, cộng trừ theo vế, hai góc bù nhau .v. v.

2.
Chứng minh tam giác cân:
C1: Chứng minh tam giác đó có hai cạnh bằng nhau hoặc hai góc bằng nhau.
C2: Chứng minh đường trung tuyến đồng thời là đường cao, đường phân giác, đường trung trực của tam giác đó
C3:Chứng minh tam giác có hai đường trung tuyến bằng nhau v.v.

3.
Chứng minh tam giác đều:
C1: Chứng minh 3 cạnh bằng nhau hoặc 3 góc bằng nhau.
C2: Chứng minh tam giác cân có 1 góc bằng 600.

4.
Chứng minh tam giác vuông:
C1: Chứng minh tam giác có 1 góc vuông.
C2: Dùng định lý Pytago đảo.
C3: Dùng tính chất: “đường trung tuyến ứng với một cạnh bằng nữa cạnh ấy thì tam giác đó là tam giác vuông”...

5.
Chứng minh tia Oz phân giác của góc xOy:
C1: Chứng minh góc xOz bằng góc yOz.
C2: Chứng minh điểm M thuộc tia Oz và cách đều 2 cạnh Ox và Oy.

6.
Chứng minh bất đẳng thức đoạn thẳng, góc. Chứng minh 3 điểm thẳng hàng, 3 đường đồng qui, hai đường thẳng vuông góc v. v. . .(dựa vào các định tương ứng)

BÀI TẬP MINH HỌA

Bài 1:
Cho ∆ ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA
a) Chứng minh: góc BAD = góc ADB
b) Chứng minh: AS là phân giác của góc HAC
c) Vẽ DK vuông góc AC ( K thuộc AC). C/m: AK = AH
d) Chứng minh: AB + AC < BC + 2AH

Bài 2:
Cho tam giác ABC vuông ở C có góc A bằng 60[SUP]0[/SUP] . Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc AB ( K thuộc AB). Kẻ BD vuông góc với tia AE( D thuộc tia AE).
Chứng minh:
a) AC = AK và AE vuông góc CK
b) KA = KB
c) EB > AC
d) Ba đường thẳng AC, BD, KE cùng đi qua một điểm.

Bài 3: Cho tam giác ABC có góc A bằng 90[SUP]0[/SUP] ; AC> AB. Kẻ AH vuông góc BC. Trên DC lấy điểm D sao cho HD = HB. Kẻ CE vuông góc với AD kéo dài. Chứng minh rằng:
a) Tam giác BAD cân
b) CE là phân giác của góc
c) Gọi giao điểm của AH và CE là K. Chứng minh: KD// AB.
d) Tìm điều kiện của tam giác ABC để tam giác AKC đều.

Bài 4: Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuông góc với BC (H thuộc BC). Biết HI = 1cm, HB = 2cm, HC = 3cm. Tính chu vi tam giác ABC?

Bài 5: Cho tam giác ABC có góc B > 90[SUP]0[/SUP]. Gọi d là đường trung trực của BC, O là giao điểm của AB và d. Trên tia đối của tia CO lấy điểm E sao cho CE = BA. Chứng minh rằng d là trung trực của AE.

 

VnKienthuc lúc này

Không có thành viên trực tuyến.

Định hướng

Diễn đàn VnKienthuc.com là nơi thảo luận và chia sẻ về mọi kiến thức hữu ích trong học tập và cuộc sống, khởi nghiệp, kinh doanh,...
Top