\[{S}_{1}=\frac{2}{9}(9+99+999+.....+99...9)\]
\[=\frac{2}{9}(10-1+100-1+1000-1+.....+100..0-1)\]
\[=\frac{2}{9}(10+100+1000+....+100...0-n)\]
\[=\frac{2}{9}((\frac{10(1-{10}^{n})}{1-10}-n)\] (Vì 10+100+1000+....+100...0 là 1 tổng 1 cấp số nhân)
\[=\frac{-2(10-{10}^{n+1}+9n)}{81}\]