\[\\f(x)=(1+\sqrt5)\sin^2x+4\sin x \cos x+ (-1+\sqrt5)\cos^2x+1=1+(-1+\sqrt5)\left(\frac{1+\sqrt5}{2}\sin x+\cos x\right)^2\\=(1-\sqrt5)\sin^2x+4\sin x \cos x- (1+\sqrt5)\cos^2x+1+2\sqrt5=1+2\sqrt5-(1+\sqrt5)\left(\frac{1-\sqrt5}{2}\sin x-\cos x\right)^2.\]
Từ đó có:
\[1\le f(x)\le 1+2\sqrt5.\]