dau tien ban nhan pha toan bo hai ngoac ra thi se triet tieu dc \[a^{12}\] va \[b^{12}\] o 2 ve
sau do ban dat giu nguyen hai vr roi dat nhan tu chung thi ban se chia dc 2 ve cho \[a^2.b^2\] vi so do >0 nen khi chia bdt ko doi chieu ban van dc bdt tuong duong
sau do thi ben VP con lai la \[a^8+b^8\] \[\geq\] \[a^2.b^2.(a^4+b^4)\]
\[(a^4+b^4)^2-2.a^4.b^4\] \[\geq\] \[a^2.b^2.(a^4+b^4)\]
\[(a^4+b^4)^2-a^2.b^2.(a^4+b^4)\] \[\geq\] \[2a^4.b^4\]
\[(a^4+b^4).(a^4+b^4-a^2.b^2)\] \[\geq\] \[2a^4.b^4\]
ap dung bdt co si
\[a^4+b^4\] \[\geq\] \[2a^2.b^2\]
\[a^4+b^4-a^2.b^2\] \[\geq\] \[a^2.b^2\]
nhan ve voi ve ra dpcm