HÌNH HỌC 9: CHƯƠNG 3: BÀI 8: ĐƯỜNG TRÒN NGOẠI TIẾP, ĐƯỜNG TRÒN NỘI TIẾP
Xem hình 49. Ta nói đường tròn (O; R) là đường tròn ngoại tiếp hình vuông ABCD và ABCD là hình vuông nội tiếp đường tròn (O; R).
Đường tròn (O; r) là đường tròn nội tiếp hình vuông ABCD và ABCD là hình vuông ngoại tiếp đường tròn (O; r).
Định nghĩa
a) Vẽ đường tròn tâm O bán kính R = 2cm.
b) Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O).
c) Vì sao tâm O cách đều các cạnh của lục giác đều ? Gọi khoảng cách này là r.
d) Vẽ đường tròn (O; r).
2. Định lí
Trong đa giác đều, tâm của đường tròn ngoại tiếp trùng với tâm của đường tròn nội tiếp và được gọi là tâm của đa giác đều.
Bài tập
61. a) Vẽ đường tròn tâm O, bán kính 2 cm.
b) Vẽ hình vuông nội tiếp đường tròn (O) ở câu a).
c) Tính bán kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).
62. a) Vẽ tam giác đều ABC cạnh a = 3cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).
63. Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.
64. Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung AB, BC, CD sao cho
a) Tứ giác ABCD là hình gì?
b) Chứng minh rằng hai đường chéo của tứ giác ABCD vuông góc với nhau.
c) Tính độ dài các cạnh của tứ giác ABCD theo R.
NGUỒN: SƯU TẦM