Trang chủ
Bài viết mới
Diễn đàn
Bài mới trên hồ sơ
Hoạt động mới nhất
VIDEO
Mùa Tết
Văn Học Trẻ
Văn Học News
Media
New media
New comments
Search media
Đại Học
Đại cương
Chuyên ngành
Triết học
Kinh tế
KHXH & NV
Công nghệ thông tin
Khoa học kĩ thuật
Luận văn, tiểu luận
Phổ Thông
Lớp 12
Ngữ văn 12
Lớp 11
Ngữ văn 11
Lớp 10
Ngữ văn 10
LỚP 9
Ngữ văn 9
Lớp 8
Ngữ văn 8
Lớp 7
Ngữ văn 7
Lớp 6
Ngữ văn 6
Tiểu học
Thành viên
Thành viên trực tuyến
Bài mới trên hồ sơ
Tìm trong hồ sơ cá nhân
Credits
Transactions
Xu: 0
Đăng nhập
Đăng ký
Có gì mới?
Tìm kiếm
Tìm kiếm
Chỉ tìm trong tiêu đề
Bởi:
Hoạt động mới nhất
Đăng ký
Menu
Đăng nhập
Đăng ký
Install the app
Cài đặt
Chào mừng Bạn tham gia Diễn Đàn VNKienThuc.com -
Định hướng Forum
Kiến Thức
- HÃY TẠO CHỦ ĐỀ KIẾN THỨC HỮU ÍCH VÀ CÙNG NHAU THẢO LUẬN Kết nối:
VNK X
-
VNK groups
| Nhà Tài Trợ:
BhnongFood X
-
Bhnong groups
-
Đặt mua Bánh Bhnong
KIẾN THỨC PHỔ THÔNG
Trung Học Phổ Thông
TOÁN THPT
Kiến thức cơ bản Toán
Toán học 11
Hình 11 (NC): Ôn tập chương 1
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Trả lời chủ đề
Nội dung
<blockquote data-quote="Thandieu2" data-source="post: 147963" data-attributes="member: 1323"><p style="text-align: center"> <span style="font-size: 15px"><span style="font-family: 'arial'"><strong>Hình 11: ÔN TẬP CHƯƠNG 1</strong></span></span></p><p><span style="font-family: 'arial'"></span></p><p><span style="font-family: 'arial'"></span><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>I - Tóm tắt những kiến thức cần nhớ</strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>1. </strong>Phép dời hình là phép biến hình không làm thay đổi khoảng cách giữa hai điểm bất kì, nghĩa là nếu phép dời hình biến hai điểm <em>M, N </em>lần lượt thành hai điểm <em>M’, N’ </em>thì <em>M’N’ = MN.</em></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><em></em></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>2. </strong>Các tính chất của phép dời hình: biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó, biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng bằng nó, biến góc thành góc bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>3. </strong>Các phép dời hình cụ thể:</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Phép tịnh tiến <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> (theo vectơ <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_2.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> ) biến mỗi điểm M thành điểm M’ sao cho <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_3.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Phép đối xứng trục <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_4.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> (trục là đường thẳng <em>d</em> ) biến mỗi điểm M thành điểm M’ đối xứng với M qua <em>d</em>.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">c) Phép quay <em><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_5.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> </em>(tâm O, góc quay <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_6.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> ) biến O thành O, biến mỗi điểm M khác O thành điểm M’ sao cho OM = OM’ và góc lượng giác (OM, OM’) = <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_7.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">d) Phép đối xứng tâm <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_8.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> (tâm là điểm O) biến mỗi điểm M thành điểm M’ đối xứng với M qua O.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>4. </strong>Định nghĩa về hai hình bằng nhau: Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>5. </strong>Phép đồng dạng tỉ số <em>k </em>( <em>k </em>> 0 ) là phép biến hình biến mỗi cặp điểm M, N thành cặp điểm M’, N’ sao cho M’N’ = <em>k</em>MN.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>6. </strong>Phép đồng dạng có các tính chất: biến ba điểm thẳng hàng thành ba điểm thẳng hàng (và không làm thay đổi thứ tự ba điểm đó), biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với <em>k </em>( <em>k </em>là tỉ số của phép đồng dạng), biến tam giác thành tam giác đồng dạng với tỉ số <em>k</em>, biến một góc thành góc có cùng số đo, biến đường tròn bán kính R thành đường tròn có bán kính <em>kR</em>.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>7. </strong>Phép vị tự <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_9.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> tâm O tỉ số <em>k </em>( <em>k</em> <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_10.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> <em>0</em> ) biến mỗi điểm M thành điểm M’ sao cho <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_11.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>8. </strong>Các tính chất của phép vị tự: Phép vị tự tâm O tỉ số <em>k </em>là một phép đồng dạng tỉ số <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_12.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> nên có các tính chất của phép đồng dạng. Ngoài ra, phép vị tự có tính chất đặc biệt sau: đường thẳng nối một điểm và ảnh của nó luôn luôn đi qua O; ảnh <em>d’ </em>của đường thẳng <em>d </em>luôn song song hoặc trùng với <em>d</em>.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>9. </strong>Mỗi phép đồng dạng bao giờ cũng có thể xem là hợp thành của một phép vị tự và một phép dời hình.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>10. </strong>Định nghĩa về hai hình đồng dạng: Hai hình được gọi là đồng dạng với nhau nếu có phép đồng dạng biến hình này thành hình kia.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>II - Các câu hỏi tự kiểm tra</strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>1. </strong>Các khẳng định sau đây có đúng không?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Phép đồng nhất là một phép tịnh tiến;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Phép đồng nhất là một phép quay;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">c) Phép đồng nhất là một phép đối xứng tâm;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">d) Phép đối xứng tâm là một phép vị tự;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">e) Phép quay là một phép đồng dạng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">f) Phép vị tự là một phép dời hình.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>2. </strong>Cho hai điểm A, B phân biệt. Các khẳng định sau đây có đúng không?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Có duy nhất một phép đối xứng trục biến A thành B;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Có duy nhất một phép đối xứng tâm biến A thành B;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">c) Có duy nhất một phép tịnh tiến biến A thành B;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">d) Có duy nhất một phép quay biến A thành B;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">e) Có duy nhất một phép vị tự biến A thành B.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>3. </strong>Hãy chỉ ra một số hình có một trong các tính chất dưới đây:</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Có vô số trục đối xứng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Có vô số tâm đối xứng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">c) Có đúng n trục đối xứng.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>III - Bài tập</strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>1. </strong>Cho hai đường tròn <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_13.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> và một đường thẳng <em>d</em>.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Tìm hai điểm M, N lần lượt nằm trên hai đường tròn đó sao cho <em>d </em>là đường trung trực của đoạn thẳng MN.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Xác định điểm I trên <em>d </em>sao cho tiếp tuyến IT của <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_14.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> và tiếp tuyến IT’ của <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_15.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> hợp thành các góc mà <em>d </em>là một trong các đường phân giác của các góc đó.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>2. </strong>Chứng minh rằng nếu một hình nào đó có hai trục đối xứng vuông góc với nhau thì hình đó có tâm đối xứng.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>3. </strong>Cho đường thẳng <em>d </em>đi qua hai điểm phân biệt <em>P, Q </em>và hai điểm <em>A, B </em>nằm về một phía đối với <em>d</em>. Hãy xác định trên <em>d </em>hai điểm <em>M, N </em>sao cho<img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_16.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> và <em>AM + BN </em>bé nhất.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>4. </strong>Cho vectơ <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_17.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> và một điểm O. Với điểm M bất kì, ta gọi <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_18.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> là điểm đối xứng với M qua O và M’ là điểm sao cho <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_19.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> . Gọi <em>F</em>là phép biến hình biến M thành M’.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) <em>F </em>là phép hợp thành của hai phép nào? <em>F </em>có phải là phép dời hình hay không?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Chứng tỏ rằng <em>F </em>là một phép đối xứng tâm.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>5. </strong>Cho tam giác ABC nội tiếp trong đường tròn <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_20.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> và một điểm M thay đổi trên <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_21.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> . Gọi <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_22.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> là điểm đối xứng với M qua A , <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_23.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> là điểm đối xứng với <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_24.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> qua B, <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_25.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> là điểm đối xứng với <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_26.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> qua C.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Chứng tỏ rằng phép biến hình <em>F </em>biến điểm M thành điểm <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_27.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> là một phép đối xứng tâm.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Tìm quỹ tích điểm <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_28.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>6. </strong>Gọi <em>F </em>là phép biến hình có tính chất sau đây: Với mọi cặp điểm M, N và ảnh M’, N’ của chúng, ta luôn có <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_29.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> , trong đó <em>k </em>là một số không đổi khác 0. Hãy chứng minh rằng <em>F </em>là phép tịnh tiến hoặc phép vị tự.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>7. </strong>a) Cho tam giác ABC và hình vuông MNPQ như hình 27. Gọi V là phép vị tự tâm A tỉ số <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_30.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> . Hãy dựng ảnh của hình vuông MNPQ qua phép vị tự V.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><p style="text-align: center"><span style="font-family: 'arial'"><em><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_hinh27.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></em></span></p><p></span></span><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Từ bài toán ở câu a) hãy suy ra cách giải bài toán sau: Cho tam giác nhọn ABC, hãy dựng hình vuông MNPQ sao cho hai đỉnh P, Q nằm trên cạnh BC và hai đỉnh M, N lần lượt nằm trên hai cạnh AB và AC.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>8. </strong>Cho đường tròn <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_31.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> có đường kính AB. Gọi C là điểm đối xứng với A qua B và PQ là đường kính thay đổi của <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_32.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> khác đường kính AB. Đường thẳng CQ cắt PA và PB lần lượt tại M và N.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">a) Chứng minh rằng Q là trung điểm của CM, N là trung điểm của CQ.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">b) Tìm quỹ tích các điểm M và N khi đường kính PQ thay đổi.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>9. </strong>Cho đường tròn <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_33.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> và điểm A cố định. Một dây cung BC thay đổi của <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_34.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> có độ dài không đổi BC = m. Tìm quỹ tích các điểm G sao cho <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_35.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>IV. Các câu hỏi trắc nghiệm</strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>1. </strong>Cho hai đường thẳng song song <em>d </em>và <em>d’</em>. Có bao nhiêu phép tịnh tiến biến <em>d </em>thành <em>d’</em>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Không có phép tịnh tiến nào;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Có duy nhất một phép tịnh tiến;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Chỉ có hai phép tịnh tiến;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Có vô số phép tịnh tiến.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>2. </strong>Cho bốn đường thẳng <em>a, b, a’, b’ </em>trong đó <em>a // a’, b // b’, a </em>cắt <em>b</em>. Có bao nhiêu phép tịnh tiến biến <em>a </em>và <em>b </em>lần lượt thành <em>a’ </em>và <em>b’ </em>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Không có phép tịnh tiến nào;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Có duy nhất một phép tịnh tiến;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Chỉ có hai phép tịnh tiến;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Có rất nhiều phép tịnh tiến.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>3. </strong>Cho hai đường thẳng cắt nhau <em>d </em>và <em>d’</em>. Có bao nhiêu phép đối xứng trục biến <em>d </em>thành <em>d’ </em>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Không có phép đối xứng trục nào;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Có duy nhất một phép đối xứng trục;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Chỉ có hai phép đối xứng trục;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Có rất nhiều phép đối xứng trục.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>4. </strong>Trong các hình sau đây, hình nào có bốn trục đối xứng?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Hình bình hành;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Hình chữ nhật;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Hình thoi;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Hình vuông.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>5. </strong>Trong các mệnh đề sau, mệnh đề nào <strong>sai </strong>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Hình gồm hai đường tròn không bằng nhau có trục đối xứng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Hình gồm một đường tròn và một đoạn thẳng tùy ý có trục đối xứng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Hình gồm một đường tròn và một đường thẳng tùy ý có trục đối xứng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Hình gồm một tam giác cân và đường tròn ngoại tiếp tam giác đó có trục đối xứng.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>6. </strong>Trong các hình sau đây, hình nào không có tâm đối xứng?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Hình gồm một đường tròn và một hình chữ nhật nội tiếp;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Hình gồm một đường tròn và một tam giác đều nội tiếp;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Hình lục giác đều;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Hình gồm một hình vuông và đường tròn nội tiếp.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>7. </strong>Cho hình vuông ABCD tâm O. Xét phép quay <em>Q </em>có tâm quay O và góc quay <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_36.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> . Với giá trị nào sau đây của <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_37.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> , phép quay <em>Q </em>biến hình vuông ABCD thành chính nó?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_38.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>8. </strong>Cho hai đường thẳng song song <em>d </em>và <em>d’</em>. Có bao nhiêu phép vị tự với tỉ số <em>k </em>= 100 biến <em>d </em>thành <em>d’ </em>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Không có phép nào;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Có duy nhất một phép;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Chỉ có hai phép;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Có rất nhiều phép.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>9. </strong>Cho đường tròn <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_39.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> . Tìm mệnh đề <strong>sai </strong>trong các mệnh đề sau đây:</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Có phép tịnh tiến biến <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_40.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> thành chính nó;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Có hai phép vị tự biến <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_41.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> thành chính nó;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Có hai phép đối xứng trục biến <img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_42.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> thành chính nó;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Trong ba mệnh đề A, B, C có ít nhất một mệnh đề sai.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>10. </strong>Trong các mệnh đề sau đây, mệnh đề nào <strong>sai </strong>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Tâm vị tự ngoài của hai đường tròn nằm ngoài hai đường tròn đó;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Tâm vị tự ngoài của hai đường tròn không nằm giữa hai tâm của hai đường tròn đó;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Tâm vị tự trong của hai đường tròn luôn thuộc đoạn thẳng nối tâm hai đường tròn đó;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Tâm vị tự của hai đường tròn có thể là điểm chung của cả hai đường tròn đó.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>11. </strong>Phép biến hình nào sau đây không có tính chất: “Biến một đường thẳng thành đường thẳng song song hoặc trùng với nó” ?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Phép tịnh tiến;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Phép đối xứng tâm;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Phép đối xứng trục;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Phép vị tự.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>12. </strong>Trong các mệnh đề sau đây, mệnh đề nào <strong>sai</strong>?</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">A. Phép dời hình là một phép đồng dạng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">B. Phép vị tự là một phép đồng dạng;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">C. Phép đồng dạng là một phép dời hình;</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">D. Có phép vị tự không phải là phép dời hình.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>Bài đọc thêm</strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_43.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /> <strong>Hình Tự Đồng Dạng Và Hình Học Frac-Tan (FRACTAL)</strong></span></span></span></p><p></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">Hình trong mặt phẳng được gọi là <em>hình tự đồng dạng </em>nếu mỗi mẩu nhỏ của nó đều chứa một bộ phận đồng dạng với hình đó, tức là khi phóng to bộ phận này theo một tỉ số thích hợp, ta có thể đặt chồng khít lên hình đã cho.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">Ví dụ: đoạn thẳng, hình tam giác đều, hình vuông là những hình tự đồng dạng.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">Nhiều hình tự đồng dạng được xây dựng bằng phương pháp lập (xây dựng theo từng bước). Ví dụ:</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>* Tập Căng-to </strong>(Cantor): Cho một đoạn thẳng. Ở bước một, chia đoạn thẳng đó thành ba đoạn con bằng nhau rồi xóa khoảng ở giữa (không kể hai mút). Ở mỗi bước tiếp theo, chia mỗi đoạn chưa xóa thành ba đoạn con bằng nhau rồi xóa khoảng ở giữa (không kể hai mút). Cứ làm thế mãi thì hình còn lại là tập Căng-to.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><p style="text-align: center"><span style="font-family: 'arial'"><em><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_44.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></em></span></p><p></span></span><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>* Đường Vôn Kốc </strong>(Von Koch) : Cho một đoạn thẳng. Ở bước một, chia đoạn thẳng đó thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa rồi xóa cạnh đáy của tam giác đó thì được một đường gấp khúc. Ở mỗi bước tiếp theo, chia mỗi đoạn của đường gấp khúc thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa rồi xóa cạnh đáy của tam giác đó thì được một đường gấp khúc. Ở mỗi bước tiếp theo, chia mỗi đoạn của đường gấp khúc thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa rồi xóa cạnh đáy của tam giác đó. Cứ làm thế mãi thì được “đường Vôn Kốc”.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><p style="text-align: center"><span style="font-family: 'arial'"><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_45.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></p><p></span></span><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>* Thảm Xéc-pin-xki </strong>(Sierpinski): Cho một hình vuông. Ở bước một, chia hình vuông đó thành 9 hình vuông con bằng nhau (bằng các đoạn thẳng song song với các cạnh hình vuông) rồi xóa hình vuông con ở chính giữa (không xóa các cạnh) thì được hình gồm 8 hình vuông con. Ở bước hai, lại chia mỗi hình vuông con chưa xóa này thành 9 hình vuông con bằng nhau, rồi xóa hình vuông con ở chính giữa. Cứ làm thế mãi thì hình còn lại là “thảm Xéc-pin-xki”.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><p style="text-align: center"><span style="font-family: 'arial'"><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_46.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></p><p></span></span><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'">Nhiều hình tự đồng dạng phức tạp như thế là những đối tượng nghiên cứu của <em>Hình học frac-tan</em>, một môn hình học được khởi đầu nghiên cứu từ cuối thế kỉ XX bởi nhà toán học Man-đen-brô (Benoit Mandelbrot) nhằm mô tả hình học nhiều cấu trúc gập gẫy, gồ ghề, lồi lõm, kì dị, hỗn độn,… của nhiều hiện tượng vật lí, tự nhiên. Hình học frac-tan còn nghiên cứu cả những hình không tự đồng dạng như “bông tuyết Vôn Kốc”.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong></strong></span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><span style="font-family: 'arial'"><strong>* Bông tuyết Vôn Kốc </strong>được xây dựng bằng phương pháp lặp như sau: Cho tam giác đều. Ở bước một, chia mỗi cạnh của tam giác thành ba đoạn bằng nhau, dựng tam giác đều trên đoạn ở giữa (ở bên ngoài tam giác đã cho) rồi xóa cạnh đáy của tam giác đều này thì được một đường gấp khúc kín. Ở mỗi bước tiếp theo, chia mỗi đoạn của đường gấp khúc kín thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa (ở bên ngoài đường gấp khúc kín đó) rồi xóa cạnh đáy. Cứ làm thế mãi thì được “bông tuyết Vôn Kốc”.</span></span></span></p><p><span style="color: #000000"><span style="font-family: 'tahoma'"><p style="text-align: center"><span style="font-family: 'arial'"><img src="https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_47.jpg" alt="" class="fr-fic fr-dii fr-draggable " data-size="" style="" /></span></p><p></span></span><span style="font-family: 'arial'"></span></p><p><span style="font-family: 'arial'"></span><strong> Nguồn: SƯU TẦM</strong></p></blockquote><p></p>
[QUOTE="Thandieu2, post: 147963, member: 1323"] [CENTER] [SIZE=4][FONT=arial][B]Hình 11: ÔN TẬP CHƯƠNG 1[/B][/FONT][/SIZE][/CENTER] [FONT=arial] [/FONT][COLOR=#000000][FONT=tahoma][FONT=arial][B]I - Tóm tắt những kiến thức cần nhớ [/B][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]1. [/B]Phép dời hình là phép biến hình không làm thay đổi khoảng cách giữa hai điểm bất kì, nghĩa là nếu phép dời hình biến hai điểm [I]M, N [/I]lần lượt thành hai điểm [I]M’, N’ [/I]thì [I]M’N’ = MN. [/I][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]2. [/B]Các tính chất của phép dời hình: biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó, biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng bằng nó, biến góc thành góc bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 3. [/B]Các phép dời hình cụ thể:[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Phép tịnh tiến [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8.jpg[/IMG] (theo vectơ [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_2.jpg[/IMG] ) biến mỗi điểm M thành điểm M’ sao cho [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_3.jpg[/IMG][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Phép đối xứng trục [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_4.jpg[/IMG] (trục là đường thẳng [I]d[/I] ) biến mỗi điểm M thành điểm M’ đối xứng với M qua [I]d[/I].[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]c) Phép quay [I][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_5.jpg[/IMG] [/I](tâm O, góc quay [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_6.jpg[/IMG] ) biến O thành O, biến mỗi điểm M khác O thành điểm M’ sao cho OM = OM’ và góc lượng giác (OM, OM’) = [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_7.jpg[/IMG][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]d) Phép đối xứng tâm [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_8.jpg[/IMG] (tâm là điểm O) biến mỗi điểm M thành điểm M’ đối xứng với M qua O.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 4. [/B]Định nghĩa về hai hình bằng nhau: Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 5. [/B]Phép đồng dạng tỉ số [I]k [/I]( [I]k [/I]> 0 ) là phép biến hình biến mỗi cặp điểm M, N thành cặp điểm M’, N’ sao cho M’N’ = [I]k[/I]MN.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 6. [/B]Phép đồng dạng có các tính chất: biến ba điểm thẳng hàng thành ba điểm thẳng hàng (và không làm thay đổi thứ tự ba điểm đó), biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với [I]k [/I]( [I]k [/I]là tỉ số của phép đồng dạng), biến tam giác thành tam giác đồng dạng với tỉ số [I]k[/I], biến một góc thành góc có cùng số đo, biến đường tròn bán kính R thành đường tròn có bán kính [I]kR[/I].[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 7. [/B]Phép vị tự [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_9.jpg[/IMG] tâm O tỉ số [I]k [/I]( [I]k[/I] [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_10.jpg[/IMG] [I]0[/I] ) biến mỗi điểm M thành điểm M’ sao cho [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_11.jpg[/IMG][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 8. [/B]Các tính chất của phép vị tự: Phép vị tự tâm O tỉ số [I]k [/I]là một phép đồng dạng tỉ số [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_12.jpg[/IMG] nên có các tính chất của phép đồng dạng. Ngoài ra, phép vị tự có tính chất đặc biệt sau: đường thẳng nối một điểm và ảnh của nó luôn luôn đi qua O; ảnh [I]d’ [/I]của đường thẳng [I]d [/I]luôn song song hoặc trùng với [I]d[/I].[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 9. [/B]Mỗi phép đồng dạng bao giờ cũng có thể xem là hợp thành của một phép vị tự và một phép dời hình.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 10. [/B]Định nghĩa về hai hình đồng dạng: Hai hình được gọi là đồng dạng với nhau nếu có phép đồng dạng biến hình này thành hình kia.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] II - Các câu hỏi tự kiểm tra[/B][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]1. [/B]Các khẳng định sau đây có đúng không?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Phép đồng nhất là một phép tịnh tiến;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Phép đồng nhất là một phép quay;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]c) Phép đồng nhất là một phép đối xứng tâm;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]d) Phép đối xứng tâm là một phép vị tự;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]e) Phép quay là một phép đồng dạng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]f) Phép vị tự là một phép dời hình.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 2. [/B]Cho hai điểm A, B phân biệt. Các khẳng định sau đây có đúng không?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Có duy nhất một phép đối xứng trục biến A thành B;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Có duy nhất một phép đối xứng tâm biến A thành B;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]c) Có duy nhất một phép tịnh tiến biến A thành B;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]d) Có duy nhất một phép quay biến A thành B;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]e) Có duy nhất một phép vị tự biến A thành B.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 3. [/B]Hãy chỉ ra một số hình có một trong các tính chất dưới đây:[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Có vô số trục đối xứng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Có vô số tâm đối xứng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]c) Có đúng n trục đối xứng.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] III - Bài tập[/B][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]1. [/B]Cho hai đường tròn [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_13.jpg[/IMG] và một đường thẳng [I]d[/I].[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Tìm hai điểm M, N lần lượt nằm trên hai đường tròn đó sao cho [I]d [/I]là đường trung trực của đoạn thẳng MN.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Xác định điểm I trên [I]d [/I]sao cho tiếp tuyến IT của [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_14.jpg[/IMG] và tiếp tuyến IT’ của [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_15.jpg[/IMG] hợp thành các góc mà [I]d [/I]là một trong các đường phân giác của các góc đó.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 2. [/B]Chứng minh rằng nếu một hình nào đó có hai trục đối xứng vuông góc với nhau thì hình đó có tâm đối xứng.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 3. [/B]Cho đường thẳng [I]d [/I]đi qua hai điểm phân biệt [I]P, Q [/I]và hai điểm [I]A, B [/I]nằm về một phía đối với [I]d[/I]. Hãy xác định trên [I]d [/I]hai điểm [I]M, N [/I]sao cho[IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_16.jpg[/IMG] và [I]AM + BN [/I]bé nhất.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]4. [/B]Cho vectơ [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_17.jpg[/IMG] và một điểm O. Với điểm M bất kì, ta gọi [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_18.jpg[/IMG] là điểm đối xứng với M qua O và M’ là điểm sao cho [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_19.jpg[/IMG] . Gọi [I]F[/I]là phép biến hình biến M thành M’.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) [I]F [/I]là phép hợp thành của hai phép nào? [I]F [/I]có phải là phép dời hình hay không?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Chứng tỏ rằng [I]F [/I]là một phép đối xứng tâm.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 5. [/B]Cho tam giác ABC nội tiếp trong đường tròn [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_20.jpg[/IMG] và một điểm M thay đổi trên [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_21.jpg[/IMG] . Gọi [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_22.jpg[/IMG] là điểm đối xứng với M qua A , [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_23.jpg[/IMG] là điểm đối xứng với [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_24.jpg[/IMG] qua B, [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_25.jpg[/IMG] là điểm đối xứng với [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_26.jpg[/IMG] qua C.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Chứng tỏ rằng phép biến hình [I]F [/I]biến điểm M thành điểm [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_27.jpg[/IMG] là một phép đối xứng tâm.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Tìm quỹ tích điểm [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_28.jpg[/IMG][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 6. [/B]Gọi [I]F [/I]là phép biến hình có tính chất sau đây: Với mọi cặp điểm M, N và ảnh M’, N’ của chúng, ta luôn có [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_29.jpg[/IMG] , trong đó [I]k [/I]là một số không đổi khác 0. Hãy chứng minh rằng [I]F [/I]là phép tịnh tiến hoặc phép vị tự.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]7. [/B]a) Cho tam giác ABC và hình vuông MNPQ như hình 27. Gọi V là phép vị tự tâm A tỉ số [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_30.jpg[/IMG] . Hãy dựng ảnh của hình vuông MNPQ qua phép vị tự V.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][CENTER][FONT=arial][I][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_hinh27.jpg[/IMG][/I][/FONT][/CENTER] [/FONT][/COLOR][COLOR=#000000][FONT=tahoma][FONT=arial]b) Từ bài toán ở câu a) hãy suy ra cách giải bài toán sau: Cho tam giác nhọn ABC, hãy dựng hình vuông MNPQ sao cho hai đỉnh P, Q nằm trên cạnh BC và hai đỉnh M, N lần lượt nằm trên hai cạnh AB và AC.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 8. [/B]Cho đường tròn [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_31.jpg[/IMG] có đường kính AB. Gọi C là điểm đối xứng với A qua B và PQ là đường kính thay đổi của [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_32.jpg[/IMG] khác đường kính AB. Đường thẳng CQ cắt PA và PB lần lượt tại M và N.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]a) Chứng minh rằng Q là trung điểm của CM, N là trung điểm của CQ.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]b) Tìm quỹ tích các điểm M và N khi đường kính PQ thay đổi.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 9. [/B]Cho đường tròn [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_33.jpg[/IMG] và điểm A cố định. Một dây cung BC thay đổi của [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_34.jpg[/IMG] có độ dài không đổi BC = m. Tìm quỹ tích các điểm G sao cho [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_35.jpg[/IMG][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] IV. Các câu hỏi trắc nghiệm[/B][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]1. [/B]Cho hai đường thẳng song song [I]d [/I]và [I]d’[/I]. Có bao nhiêu phép tịnh tiến biến [I]d [/I]thành [I]d’[/I]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Không có phép tịnh tiến nào;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Có duy nhất một phép tịnh tiến;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Chỉ có hai phép tịnh tiến;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Có vô số phép tịnh tiến.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 2. [/B]Cho bốn đường thẳng [I]a, b, a’, b’ [/I]trong đó [I]a // a’, b // b’, a [/I]cắt [I]b[/I]. Có bao nhiêu phép tịnh tiến biến [I]a [/I]và [I]b [/I]lần lượt thành [I]a’ [/I]và [I]b’ [/I]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Không có phép tịnh tiến nào;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Có duy nhất một phép tịnh tiến;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Chỉ có hai phép tịnh tiến;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Có rất nhiều phép tịnh tiến.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 3. [/B]Cho hai đường thẳng cắt nhau [I]d [/I]và [I]d’[/I]. Có bao nhiêu phép đối xứng trục biến [I]d [/I]thành [I]d’ [/I]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Không có phép đối xứng trục nào;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Có duy nhất một phép đối xứng trục;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Chỉ có hai phép đối xứng trục;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Có rất nhiều phép đối xứng trục.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 4. [/B]Trong các hình sau đây, hình nào có bốn trục đối xứng?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Hình bình hành;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Hình chữ nhật;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Hình thoi;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Hình vuông.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 5. [/B]Trong các mệnh đề sau, mệnh đề nào [B]sai [/B]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Hình gồm hai đường tròn không bằng nhau có trục đối xứng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Hình gồm một đường tròn và một đoạn thẳng tùy ý có trục đối xứng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Hình gồm một đường tròn và một đường thẳng tùy ý có trục đối xứng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Hình gồm một tam giác cân và đường tròn ngoại tiếp tam giác đó có trục đối xứng.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 6. [/B]Trong các hình sau đây, hình nào không có tâm đối xứng?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Hình gồm một đường tròn và một hình chữ nhật nội tiếp;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Hình gồm một đường tròn và một tam giác đều nội tiếp;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Hình lục giác đều;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Hình gồm một hình vuông và đường tròn nội tiếp.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 7. [/B]Cho hình vuông ABCD tâm O. Xét phép quay [I]Q [/I]có tâm quay O và góc quay [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_36.jpg[/IMG] . Với giá trị nào sau đây của [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_37.jpg[/IMG] , phép quay [I]Q [/I]biến hình vuông ABCD thành chính nó?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_38.jpg[/IMG][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 8. [/B]Cho hai đường thẳng song song [I]d [/I]và [I]d’[/I]. Có bao nhiêu phép vị tự với tỉ số [I]k [/I]= 100 biến [I]d [/I]thành [I]d’ [/I]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Không có phép nào;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Có duy nhất một phép;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Chỉ có hai phép;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Có rất nhiều phép.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 9. [/B]Cho đường tròn [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_39.jpg[/IMG] . Tìm mệnh đề [B]sai [/B]trong các mệnh đề sau đây:[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Có phép tịnh tiến biến [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_40.jpg[/IMG] thành chính nó;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Có hai phép vị tự biến [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_41.jpg[/IMG] thành chính nó;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Có hai phép đối xứng trục biến [IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_42.jpg[/IMG] thành chính nó;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Trong ba mệnh đề A, B, C có ít nhất một mệnh đề sai.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 10. [/B]Trong các mệnh đề sau đây, mệnh đề nào [B]sai [/B]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Tâm vị tự ngoài của hai đường tròn nằm ngoài hai đường tròn đó;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Tâm vị tự ngoài của hai đường tròn không nằm giữa hai tâm của hai đường tròn đó;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Tâm vị tự trong của hai đường tròn luôn thuộc đoạn thẳng nối tâm hai đường tròn đó;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Tâm vị tự của hai đường tròn có thể là điểm chung của cả hai đường tròn đó.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B]11. [/B]Phép biến hình nào sau đây không có tính chất: “Biến một đường thẳng thành đường thẳng song song hoặc trùng với nó” ?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Phép tịnh tiến;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Phép đối xứng tâm;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Phép đối xứng trục;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Phép vị tự.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] 12. [/B]Trong các mệnh đề sau đây, mệnh đề nào [B]sai[/B]?[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]A. Phép dời hình là một phép đồng dạng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]B. Phép vị tự là một phép đồng dạng;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]C. Phép đồng dạng là một phép dời hình;[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]D. Có phép vị tự không phải là phép dời hình.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] Bài đọc thêm[/B][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_43.jpg[/IMG] [B]Hình Tự Đồng Dạng Và Hình Học Frac-Tan (FRACTAL)[/B][/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]Hình trong mặt phẳng được gọi là [I]hình tự đồng dạng [/I]nếu mỗi mẩu nhỏ của nó đều chứa một bộ phận đồng dạng với hình đó, tức là khi phóng to bộ phận này theo một tỉ số thích hợp, ta có thể đặt chồng khít lên hình đã cho.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]Ví dụ: đoạn thẳng, hình tam giác đều, hình vuông là những hình tự đồng dạng.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial]Nhiều hình tự đồng dạng được xây dựng bằng phương pháp lập (xây dựng theo từng bước). Ví dụ:[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] * Tập Căng-to [/B](Cantor): Cho một đoạn thẳng. Ở bước một, chia đoạn thẳng đó thành ba đoạn con bằng nhau rồi xóa khoảng ở giữa (không kể hai mút). Ở mỗi bước tiếp theo, chia mỗi đoạn chưa xóa thành ba đoạn con bằng nhau rồi xóa khoảng ở giữa (không kể hai mút). Cứ làm thế mãi thì hình còn lại là tập Căng-to.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][CENTER][FONT=arial][I][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_44.jpg[/IMG][/I][/FONT][/CENTER] [/FONT][/COLOR][COLOR=#000000][FONT=tahoma][FONT=arial][B] * Đường Vôn Kốc [/B](Von Koch) : Cho một đoạn thẳng. Ở bước một, chia đoạn thẳng đó thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa rồi xóa cạnh đáy của tam giác đó thì được một đường gấp khúc. Ở mỗi bước tiếp theo, chia mỗi đoạn của đường gấp khúc thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa rồi xóa cạnh đáy của tam giác đó thì được một đường gấp khúc. Ở mỗi bước tiếp theo, chia mỗi đoạn của đường gấp khúc thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa rồi xóa cạnh đáy của tam giác đó. Cứ làm thế mãi thì được “đường Vôn Kốc”.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][CENTER][FONT=arial][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_45.jpg[/IMG][/FONT][/CENTER] [/FONT][/COLOR][COLOR=#000000][FONT=tahoma][FONT=arial][B] * Thảm Xéc-pin-xki [/B](Sierpinski): Cho một hình vuông. Ở bước một, chia hình vuông đó thành 9 hình vuông con bằng nhau (bằng các đoạn thẳng song song với các cạnh hình vuông) rồi xóa hình vuông con ở chính giữa (không xóa các cạnh) thì được hình gồm 8 hình vuông con. Ở bước hai, lại chia mỗi hình vuông con chưa xóa này thành 9 hình vuông con bằng nhau, rồi xóa hình vuông con ở chính giữa. Cứ làm thế mãi thì hình còn lại là “thảm Xéc-pin-xki”.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][CENTER][FONT=arial][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_46.jpg[/IMG][/FONT][/CENTER] [/FONT][/COLOR][COLOR=#000000][FONT=tahoma][FONT=arial]Nhiều hình tự đồng dạng phức tạp như thế là những đối tượng nghiên cứu của [I]Hình học frac-tan[/I], một môn hình học được khởi đầu nghiên cứu từ cuối thế kỉ XX bởi nhà toán học Man-đen-brô (Benoit Mandelbrot) nhằm mô tả hình học nhiều cấu trúc gập gẫy, gồ ghề, lồi lõm, kì dị, hỗn độn,… của nhiều hiện tượng vật lí, tự nhiên. Hình học frac-tan còn nghiên cứu cả những hình không tự đồng dạng như “bông tuyết Vôn Kốc”.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][FONT=arial][B] * Bông tuyết Vôn Kốc [/B]được xây dựng bằng phương pháp lặp như sau: Cho tam giác đều. Ở bước một, chia mỗi cạnh của tam giác thành ba đoạn bằng nhau, dựng tam giác đều trên đoạn ở giữa (ở bên ngoài tam giác đã cho) rồi xóa cạnh đáy của tam giác đều này thì được một đường gấp khúc kín. Ở mỗi bước tiếp theo, chia mỗi đoạn của đường gấp khúc kín thành ba đoạn con bằng nhau, dựng tam giác đều trên đoạn con ở giữa (ở bên ngoài đường gấp khúc kín đó) rồi xóa cạnh đáy. Cứ làm thế mãi thì được “bông tuyết Vôn Kốc”.[/FONT][/FONT][/COLOR] [COLOR=#000000][FONT=tahoma][CENTER][FONT=arial][IMG]https://vnschool.net/georoot/Images/Toan11/L11_nc_Ch1_Bai8/L11_nc_Ch1_Bai8_47.jpg[/IMG][/FONT][/CENTER] [/FONT][/COLOR][FONT=arial] [/FONT][B] Nguồn: SƯU TẦM[/B] [/QUOTE]
Tên
Mã xác nhận
Gửi trả lời
KIẾN THỨC PHỔ THÔNG
Trung Học Phổ Thông
TOÁN THPT
Kiến thức cơ bản Toán
Toán học 11
Hình 11 (NC): Ôn tập chương 1
Top