Toán 11 - Chương 1 - PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG - Bài 1. PHÉP BIẾN HÌNH
Phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm và phép quay.
- Khái niệm về phép dời hình và hai hình bằng nhau.
- Phép vị tự, tâm vị tự của hai đường tròn.
- Khái niệm về phép đồng dạng và hai hình bằng nhau.
Bài 1. PHÉP BIẾN HÌNH
1. Trong mặt phẳng cho đường thẳng d và điểm M. Dựng hình chiếu vuông góc M’ của điểm M lên đường thẳng d.
Ta đã biết rằng với mỗi điểm M có một điểm M’ duy nhất là hình chiếu vuông góc của điểm M trên đường thẳng d cho trước (hình 1.1).
Ta có định nghĩa sau:
Định nghĩa: Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M’ của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng.
Nếu kí hiệu phép biến hình là F thì ta viết F(M) = M’ hay M’ = F(M) và gọi điểm M’ là ảnh của điểm M qua phép biến hình F.
Nếu H là một hình nào đó trong mặt phẳng thì ta kí hiệu H ’ = F(H) là tập các điểm M’ = F(M), với mọi điểm M thuộc H. Khi đó ta nói F biến hình H thành hình H ’, hay hình H ’ là ảnh của hình H qua phép biến hình F.
Phép biến hình biến mỗi điểm M thành chính nó được gọi là phép đồng nhất.
2. Cho trước số a dương, với mỗi điểm M trong mặt phẳng, gọi M’ là điểm sao cho MM’ = a. Quy tắc đặt tương ứng điểm M với điểm M’ nêu trên có phải là một phép biến hình không?
SƯU TẦM