Đề và hướng dẫn giải thi vào 10 Sở Hà Nam năm 2012

NguoiDien

Người Điên
Xu
0
Đề thi vào 10 Sở Hà Nam năm 2012
Câu 1. (1,5 điểm) Rút gọn các biểu thức sau:


a)
quicklatex.com-3d99280d1d489148c97f8936040e2d0f_l3.png



b)
quicklatex.com-5b321f4958379d6a6547b2e85eb06cae_l3.png



Câu 2. (2,0 điểm)



a) Giải phương trình:
quicklatex.com-5164d60d87429b608de1c13213cd1903_l3.png
.


b) Giải hệ phương trình:
quicklatex.com-ebe48252e9b0d9e14bd912abd66203fa_l3.png
.


Câu 3. (2,0 điểm)



Trong mặt phẳng tọa độ
quicklatex.com-94753d83b0e6a284820d11bce5ae6bd3_l3.png
cho Parabot
quicklatex.com-0718119daf759d1798b37e0526c48d65_l3.png
có phương trình
quicklatex.com-01ece37c7314b8ecc38559e2d5968dd7_l3.png
và đường thẳng
quicklatex.com-f0d62ca25ed2911a08dc3cc02481684f_l3.png
có phương trình
quicklatex.com-05ff1d1a88878c3f72dcd53a2ad39265_l3.png
(
quicklatex.com-e27d3310a08258c9e04d614bc493653c_l3.png
là tham số)


a) Tìm tọa độ các điểm thuộc
quicklatex.com-0718119daf759d1798b37e0526c48d65_l3.png
biết tung độ của chúng bằng
quicklatex.com-5f64fa2845ddc6ba13a326c4e8e01946_l3.png
.


b) Chứng minh rằng:
quicklatex.com-0718119daf759d1798b37e0526c48d65_l3.png
quicklatex.com-f0d62ca25ed2911a08dc3cc02481684f_l3.png
cắt nhau tại hai điểm phân biệt với mọi
quicklatex.com-e27d3310a08258c9e04d614bc493653c_l3.png
. Gọi
quicklatex.com-0bc00e75b9231ed482a435d385c47d24_l3.png
quicklatex.com-7fc953eabfa272a6d4ef64c1d77c9cd0_l3.png
là tung độ các giao điểm của
quicklatex.com-0718119daf759d1798b37e0526c48d65_l3.png
quicklatex.com-f0d62ca25ed2911a08dc3cc02481684f_l3.png
. Tìm
quicklatex.com-e27d3310a08258c9e04d614bc493653c_l3.png
để
quicklatex.com-ed71050aff9b5fa0a666e7d9fe718601_l3.png
.


Câu 4. (3,5 điểm)



Cho đường tròn tâm
quicklatex.com-b4a4d66352df6bbc71ec487c323b17cd_l3.png
, đường kính
quicklatex.com-6a055a313bbf1687dba35102d600465a_l3.png
. Trên tiếp tuyến của đường tròn
quicklatex.com-53327c20af6801615c99a4d92824800b_l3.png
tại
quicklatex.com-bea01eace268a1d33020224707ceb982_l3.png
lấy điểm
quicklatex.com-bd163e35f1859eb5dca0c739d38d8bfc_l3.png
(
quicklatex.com-bd163e35f1859eb5dca0c739d38d8bfc_l3.png
khác
quicklatex.com-bea01eace268a1d33020224707ceb982_l3.png
). Từ
quicklatex.com-bd163e35f1859eb5dca0c739d38d8bfc_l3.png
vẽ tiếp tuyến thứ hai
quicklatex.com-fbd05e975e0bdf09ec2f51ca5474e492_l3.png
với
quicklatex.com-53327c20af6801615c99a4d92824800b_l3.png
(
quicklatex.com-dfb930cb54efd420e29bbe184eca5aeb_l3.png
là tiếp điểm). Kẻ
quicklatex.com-104656d603eb7ae67de7a076c5e82f4a_l3.png
vuông góc với
quicklatex.com-6a055a313bbf1687dba35102d600465a_l3.png
(
quicklatex.com-62871d8eba9517726c823ed68260be6c_l3.png
),
quicklatex.com-8bf3c42a20397c5a8335493536427178_l3.png
cắt
quicklatex.com-53327c20af6801615c99a4d92824800b_l3.png
tại điểm thứ hai là
quicklatex.com-21bdabafb6966e12dcc2491a772a571f_l3.png
và cắt
quicklatex.com-104656d603eb7ae67de7a076c5e82f4a_l3.png
tại
quicklatex.com-8a0118b4d0f84b0237acc4cfeac90587_l3.png
. Chứng minh rằng:


a) Tứ giác
quicklatex.com-9e5be67eb8f83053ac00e9f49c0b0310_l3.png
là tứ giác nội tiếp.


b)
quicklatex.com-bcd50b6eb984d5fe918b87d0b7a64ffc_l3.png



c) Góc
quicklatex.com-d7e7623c00ef8abf9bc9196e60c5ffc4_l3.png
bằng góc
quicklatex.com-c73c753bf50f9d9884bce4401724f9a5_l3.png
.


d)
quicklatex.com-8a0118b4d0f84b0237acc4cfeac90587_l3.png
là trung điểm của
quicklatex.com-104656d603eb7ae67de7a076c5e82f4a_l3.png
.


Câu 5. (1,0 điểm)



Cho ba số thực
quicklatex.com-94bf78bfa574ce03c29491fb44cc15d3_l3.png
thỏa mãn:
quicklatex.com-ae4d99c4fe4c33379b9671338940efd1_l3.png
;
quicklatex.com-f3d607e5679fb16cc6ba8898c753f4ad_l3.png
;
quicklatex.com-912073bed5d397f5e85d6108b0f162f1_l3.png
.


Tìm giá trị lớn nhất của biểu thức:


quicklatex.com-be3475db06333648fdd0ba60bb3eb7ee_l3.png

- – - – - – - – - – - – - – - – HẾT- – - – - – - – - – - – - – - -
Các bạn quan tâm down đề thi và hướng dẫn giải tại đây!
 

VnKienthuc lúc này

Không có thành viên trực tuyến.

Định hướng

Diễn đàn VnKienthuc.com là nơi thảo luận và chia sẻ về mọi kiến thức hữu ích trong học tập và cuộc sống, khởi nghiệp, kinh doanh,...
Top